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Chirped solitons as attractors for short light pulses
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Nonlinear chirped pulse solutions are shown to exist as stable attractors for short light pulses in driven and
damped systems. The attractors are determined for systems of different complexity, from simple gain and
damping modelings up to the inclusion of higher-order dispersion, Raman processes, and delayed nonlinear
responses. The chirped attractors, their stability, as well as the attractor basins can be determined analytically.
The analytical predictions are in excellent agreement with numerical simulations.

DOI: 10.1103/PhysRevE.70.056605 PACS nuni®erd2.65.Tg, 05.45.Yv, 42.79.Sz, 42.81.Dp

[. INTRODUCTION the balance between group velocity dispersiGivD), self-
) ) ) ) phase modulatioiSPM), TOD, and self-steepening effects,

Localized structures are important objects of nonlinearespectively. The research results have shown the complex-
dynamics in driven and dissipative systems far from equilib-ty, multiplicity, and richness of phenomena in driven and
rium. The cubic, complex Ginzburg-Landau equationdamped nonlinear short-pulse physjé9—26.
(CGLE) is one of the most-studied nonlinear models in such  The unique stability of short-pulse solitons, enabled by
systems. It allows us to understand a vast variety of phenonthe capability of balancing the dispersion and nonlinearity, is
ena, e.g., self-trapping of light, second-order phase transia very important phenomenon compared to lingansoli-
tions, superconductivity, superfluidity, Bose-Einstein con-ton) systems. A decisive point is the possibility of compen-
densation, liquid crystals, strings in field theory, particlesating losses by amplification. In this paper, we investigate
acceleration in relativistic plasmas, and so(ese, e.g.[1]  different practical forms for gain and damping processes.
and references thereirin some areas, the CGLE appears asThe unique results of the yarious investiga}tions a_lre that at-
a generalized or higher-order nonlinear Schrédinger equatioiactors in forms of solitonlike pulses do exist. An important
(HNLSE). The integrable(cubic) nonlinear Schrodinger characteristic of the attractors is the chirp. Knowing the ana-
equation(NLSE) is the weakly nonlinear and weakly disper- lytical fprms of attractor solutions, we are able to _pred|ct 'ghe
sive paradigm for envelope radiation pulses. The nonIineaﬁ;b’n""m'(.:S of the'pulse parameters, such as amplltude, width,
short-pulse propagation requires further generalizations gind chirp. Motivated by numerical simulations, reduced
e NLSE Ieaing to & one-dmensional CGLE o HNLSETO0e of he driven and damped rNCSE: ave proposed by
[2r86]r tb);nt]aklnghlntotﬁi?g?urzt,red.ig., dr'sip%gge';yﬁinh'grer'determined solutions of these problems are shown to be at-
order te gsuch as order dispers ¢ ) noniineéar 44 ctors for a variety of initial values. Stability analysis of the
dispersion, and self-frequency shifSFS arising from 544015 leads to characterizations of the basins of attrac-
stimulated Raman scattering . . tions in the cases of balanced gain and damping, and shows

The models were further extended, particularly for inten-

. ; ) new phenomena such as short-pulse generation when ampli-
sive and short light pulses whose widths are shorter thaﬂcation and damping are not balanced
100 fs. Then, in addition to the dispersive-type effects men- | o paper, we present the exact chirped solitonlike so-

tioned above, als_o_thr_e driven and_ d|SS|pat|_ve-ty_pe_ ef-feCtﬁution for a fs laser pulse, including not only dispersive-type
such as spectral limitation due to gain bandwidth-limited am-,

P o . ) effects but also the driven and dissipative-type contributions.
plification and/or spectral filtering, nonlinear gain and/or ab-

. ih f d/ low delaved i It will have its application in ultrashort optical pulse propa-
sorption with fast and/or slow delayed nonlinear reSpOnsegation in nonconservative systems. As a very important gen-
etc., may play important roles. With quite general arguments, o ji-ation compared to recent findinfz7], we are able to

Gagnon and Bélang¢¥] have derived a generalized integro- yayq intg account the delayed nonlinear response which was

differential equation to describe the propagation of a n(.m"n'not considered previously. We will discuss the dependence of

the pulse widths on the parameters of the system as well as
the stability with respect to the finite amplitude perturba-
ons.
The paper is organized as follows. In the next section, we
esent the general model. That model is analyzed in full
generality in Sec. lll. In Appendix A, we discuss a simplified
version which has been often used in the literature. At the
simplified model, we explain what is meant by the core and
*Electronic address: spatschek@thphy.uni-duesseldorf.de tail stability problems, respectively. There, also the main
"Present address: Department of Electronics and Informatiotools, such as numerical simulation, collective coordinates,
Technology, Shanxi University, Taiyuan, Shanxi 030006, People’sand perturbation theory, are demonstrated for a case which is
Republic of China. easier to look through. Nevertheless, new results are already

employing adiabatic perturbation methdds.

Many authorg8-18 have analyzed HNLSEs from differ-
ent points of view(e.g., Painlevé analysis, Hirota direct
method, inverse scattering transform, Darboux-BéickIuncbr
transform, etg. They obtained solitonlike solutions under
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presented there, and discrepancies in the literature are clari- A. Analytical predictions

fied. Solitary soIL_Jtions in _thg general case are dgmonstra_ted From the mathematical point of view, E€L) is a highly

N Sep. li. Analytlcal predlctlo.ns are compared W|th.numer|- nontrivial, nonconservative partial differential equation. In
cal simulations. The Lagrangian method for collective COOIgeneral, its solution is not known. Nevertheless, it is inter-
dinates turns out to be a very effective tool for quite preciseesting to note that for the general case, the form of the sta-
predictions. The main conclusion of this section will be thattionary soliton solutions, which act as attractors, can be de-
solitary attractors with stable tails do exist. The paper is cONggrmined analytically. In the following, we first describe the

cluded by a short summarec. IV). recipe to find analytical soliton expressions.

1. Motivation of the ansatz
Il. GENERAL MODEL , _ .
We start with the analysis of E@l) by separatingy(z,t)

A quite general model for the propagation of femtosecondnto a real amplitude envelope functigk(z,t) and a phase

(e.g., 100 fg pulses i[3,7] shift  ¢(z,t)=Qt-Kz+¢(z,t) according to q(z,t)
1 =A(z,t)exdip(z,t)]. Here ¢(z,t) denotes a possible nonlin-
iq,+ SOt lal?q=i69— ya, +i B0y +ix]|91%q + iNGy ear phase shift. Substituting the ansatz into @, and as-
suming both the envelope functid(z,t) and the nonlinear
) ) ) o t ) phaseg(z,t) to be even functions, we can decouple ED.
+iu(|gf)+iva(a*)+ikg | |of*dt into two equations, namely,
o - (i%0+ Y6COA+i7a(Ag, + o A+i120.A, = ZA) +iyA°
+IUQtf |Q|2th|R[q,QJ- (1) - oB(A,—ip,A) =0 2)

Here,q(z,t).is the comple>'( envglope of the.electric fields (y1= P)(A. +i0.A) = \[Ag, +i3¢ Ay + 3(i 0y, <P§)A7

the normalized propagation distance, ant the retarded

time. The model parametess y, 8, andy are real constants; + (i@, ~ 30,0, ~ 12)A] - uA*(3A, +ig,A) - 12A A2
N\, », v, k, ando can be complex. Anomalous dispersion is _ i -

assumed. Furthermoré>0 (<0) is the linear excess gain *¥AB= 0Ci(A, ~ie A =0, ®
(los9 at the carrier frequency,; v and the imaginary paw; Here r=t—pz is the retarded timef' A%dt=/7_A2dr=B(7)
of \ result from the difference between the pulse carrier fres+C,, with C;=B(7)|,_.., and the parameterg are defined
quencyw, and the gain-center frequeney, (and are propor- as y,=-K+Q2/2+\,Q3+i(6- yQ-BO%+N\05%), y=-iy
tional to Sw=w,— wg), B describes the effect of spectral limi- +2(1/2-i8)Q-3\Q, 1%=—(1/2-i8)Q-3\Q, y,=-(1
tation due to gain bandwidth-limited amplification and/or —iy)-uQ, and ys=-«-ic€). When setting

spectral filtering(which are inversely proportional to gain

and/or spectral filtering bandwidth, respectiyely accounts AJA=BICy=¢,/Cs, (4)

for nonlinear gain and/or other absorption processes. Thgare the coefficient€, and C; are constantgto be deter-

real parth, of A represents the net TOD from material. The yinaq |atey, Eqs.(2) and(3) are compatible under the con-
real partu, of u is the nonlinear dispersion term; it is re- gitions

sponsible for self-steepening at the pulse edge. The imagi-

nary party; of u describes the combined effect of nonlinear . . ¥6C2

gain and/or absorption processess the nonlinear gradient [i72(1 +iCy) - UC2]<71 -pt 1+iCs - 1)

term which results from the time-retarded induced Raman o

process; its imaginary pau; is usually responsible for the == N1 +iCy)(iyo + %L, 5)

soliton self-frequency shif2]; « and o result from the pos- 54

sible slow delayed response of nonlinear gain and/or absorp-

tion effects. We would like to emphasize that mathematically _ .

the delay terms, being proportional toand o, change the [i72(2+iCq) - UCZ]("” 3+iC,
type of the problem to an integro-differential equation.

) =iyN(2+iCy). (6)

It is easy to prove that subject to zero-boundary conditions
Eq. (3) has the following localized solution:
Ill. SOLITARY ATTRACTORS
A(7) = Agseclinr), (7
In this section, we shall show that realistic chirped soliton

attractors with stable tails result from the general madgl
provided relevant physical effects are included. This is very —(jy + v,C)) +[iy5(1 +iCs) = 0C,](1 +iC3)72=0, (8)
important since, as we show in Appendix fextremely
simplified models which have been extensively used in the C a2 . . _
literature do not lead to soliton attractors with stable tails. IAg ~ [172(2 +1Cq) ~ 0Col(1 +iCg)* = 0. ©)
Thus, the additional effects discussed here are very importamhe compatibility conditiong5) and(6) can now be written
for practical applications. in more convenient forms,

for
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7= oin%2mg+ [y — mg+ Ui2n4/4m§]l/21 (15

where mg=2C3\+\(1-C5), Me=(yg~Y6rC3n?)/(1+C5).
5 The pulse amplitudé, can be derived from the imaginary
(’” THic )Aé—x(1+ics)<2+ic3>n2=o. (1 ~ PartofEq.(l)
° 6(1-C2)\, + Cy(11 -CI\,
Substituting the solution(7) into [* A%dt=B(7)+C; and Ao=7 30+ 204 C .
making use of Eq(4), we can determineC;=A3/7, C, U
=AB/A,=-A3/ 77, and ¢=—C; In[cost(57)]. The parameter The amplitude shift parameter and the phase shift pa-
C; will be determined by Eqs(8)—(11). Obviously, the pa- rameterK are determined by the imaginary part of )

¥6C>
1+iCs

(71‘P+ ‘(Tcl> - M1+iCy?7*=0, (10)

(16)

rameterC; denotes the chirp strength. and the real part of Eq.10), respectively. Finally, the real
Making use of all these findings, we can present the soparts of Eq.(8) and Eq.(9) will give the constraints on the
lution of Eq. (1) as model parameters so that the stationary soliton solutl@n
. can exist.
— +HC H
A(zt) = Agsectin(t - pz) [} “sexpli[Q(t - p2) - Kz]}. Summarizing, narrow, chirped solitonlike pulse forms of

(12 Eqg. (1) can be calculated systematically in the foff2). The

. .parameters follow from algebraic equations.
The form (12) has been extensively used as an ansatz |r[\) g q

many dynamical equations, e.g., for NLSE, HNLSE, and the -
CGLE, also including the nonlinear term of slow response 3. Specific dependences

time [27]. Directly substituting the solutio(l2) into Eq. (1) Generally, the properties of the solitonlike pulses are com-
and requiring the coefficients of independent terms of hyperpjicated and difficult to investigate analytically because of
bolic secant functions to vanish separately, relati@s(11)  the complex dependences on the model parameters. Here we
will appear. It implies that, similar to the case of NLSE, present only one example to show the dependence of the
physical effects in each equation balance each other to forfgyise widths on the parameters chiyp frequency shift),
the solitonlike solution(12). TOD \,, gain-band-limitation and/or spectral filter, SFS, and
slow delayed response to nonlinear gain and/or absorption
_ _ numerically. We have found that for the coefficients
In the following, we concentrate on the general propertiess=_3 25x 103, y=1.019x 102 B=0.853, y=0.224,
of the solitonlike solution. We first evaluate the pulse params =-5367< 1072 \=1.263<103, u,=-2X1072 =
eters in explicit forms. —102, 1,=-2X 1072, »,=-5X 102, x,=102 Kx=7X 1073,
Equationg(8)—11) are four complex equations. They can 0,=4X 103, anda,=-3% 1073, the solitonlike solutior(12)
determine eight real parameters. From the real and imaginayss the parameterf,=0.58, 7=0.38 , Q=2x1073, C,
parts of Eq.(11) one can find the algebraic equation for the:0.586,p:2.823>< 102, andK=-0.198. As shown in Fig.
chirp parametets, 1(a), narrower pulses will occur for the positive chirp than
m1C‘3‘+ (2m, - 3m4)C§ +(7my - 12mz)C§ for the negative chirp. Figuregld) and Xc) indicate that _the
larger frequency shift and the smaller absolute TOD will lead
- (22mg + 27m,)C3+ 6(2m —3my) =0.  (13)  to the narrower pulse widths. The former has been observed
in some laser systems and fiber amplifigisee, e.g.,
[28-3Q), and the latter is consistent with the well-known
experimental results from ultrashort-pulse lasers. From Figs.
(d)-1(f), we can recognize that larger spectral filter, larger
FS effects, and stronger slow saturable absorption will pro-
uce narrower pulses.
By numerical simulations of Eq1), we have proven the
ability of that solution. Note that for this solution, together
with the core, also the tails are stable.

2. Evaluation of the parameters

Here we have setmy=(\jw,—A\;wi), M=\, v=\jv,), My
=Ny N, andmy= (A + i)

Equation(13) indicates that the chirp is strongly depen-
dent on the higher-order dispersive, nonresonance, sel
steepening, and self-frequency shift effects. Only if the very,
specific condition 8\, =\, wi) =2(\,v;—\;v,) is satisfied is
a proper balance available, and no chirp occurs. Thus, &
solitary-wave solution without chirp can exist in dispersive
systems(such as the NLSE and HNLS$Enly under quite
restrictive conditions.

Combining the imaginary part of E¢9) and the real part

of Eqg. (11), one can determine the frequency shift )
5 The analytical treatments suggest that the attractor of Eq.
(1+0,C3+ 07N> —3C3B8- (2 -C3)/2

- (14) (1) can be written in the explicit analytical form

—C3 —o\.C. — 2 ’
(2= = MG~ d(z,t) = A{sechi(t - T)lexp(iC log{sectin(t - T)1})
where we have definech?= A2/ 77=[6(1-C3\,—C4(11 . .

Xexpli[Q(t-T)] +iK}. 17)
~CHON I/ Bpae + 20~ Capyy). i (_ 1+ 1K) _ (
The imaginary part of Eq(10) and the real part of Eq. As has been shown, in some ranges, the six paramiteys
(11) lead to the parameter being inversely proportional to theC, T(2), K(2), and() can be calculated exactly from algebraic

pulse width, relations by methods similar {@2].

B. Lagrangian methods
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As we will show next, the Lagrange methods can be used d{oLy\ dLo . [ . dq aq
to predict the analytical values in accordance with numerical —\ o)~ =g d{R-——-R—| (19
X . dz\ gx; X% e % a%;
simulations.
The Lagrangian method is extensively demonstrated ifor j=1,2, ... ,6determine the chirped soliton dynamics in

the Appendix A. Thus, here we immediately go to the eX-the representatiofi7). In Appendix B, we present the details
plicit results. Using Eq(17), the time-integrated Lagrangian of the Euler-Lagrange equations.
density reads

Lo=Ly(AA', 7,7 ,C,C" T.T . K,K',Q,Q) 2. Comparison with numerical solutions

Next, we have compared the numerical solutions of Eg.

4 202 201 2 ’
= A 17,2A(1 +C)%- AT 28K + 2AOT (1) with predictions by Eqs(B2)«B6). The stationary solu-
37 3 7 7 7 tions (fixed pointg agree exactly. In general, we can say that
2A2C'  log(4)A’C’  A2Cy the Lagrangian perturbation theory predicts the dynamics
+ - . (18)  very well.
n K K Without delayed responsec=c=0), in Fig. 2 a soliton
This form is a generalization of the Lagrangian shown insolution is shown for the parameter8=-0.00151, y
Appendix A. Here we have added a time sfiftT(z). =0.062 93, B=0.509 67, xy=0.191 58, \,=-0.032 04, A,
1. Collective coordinates =0.007 72,u,=-0.041 37,,=-0.0256, andu;=v»,=0. The
' soliton parameters ak=0.815 85,7=0.653 33,C=0.4182,

Within this formulation, the parametess »,C,T,K, and and Q=-0.053 115. That completely stable solution is
Q are the coordinatdsx;,i=1,2, ...,8, and the derivatives marked as initial since we use it in the next step as an initial
[=x/,i=1,2,...,6 correspond to velocities, being desig- pulse (which evolves inz) in Eq. (1) with \,=-0.042 and
nated as primed quantities, i.&/=dA/dz and so on. The \,=-0.02, respectively. The other parameters are unchanged.
fixed points of the corresponding six modified Euler- The numerically determined asymptotic and stable solutions
Lagrange equations are also shown in Fig. Rwith the characterization numeri-
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FIG. 2. Asymptotic numerical solutions of EgL) for different FIG. 4. Numerical solutions of Eql). An unstable situation

parameter values, but without delayed responses. The inset shoW$=0.08 is compared with a stable caég=0.06. In the unstable

the amplitude predictions by the Lagrangian momentum methodsituation, pulses are generated, but in all cases the Lagrangian mo-

We find attractors with stable tails. mentum method predicts the right core paramettére predicted
amplitudes are shown as bars

cal). In parallel to the numerical simulations, we have solved C. Stability of the tails
the Euler-Lagrange equatioiiB2)—(B6). The z dependence
of the amplitudeA is shown as the inset in Fig. 2 for the two
\, values, respectively. The predicted amplitugesry agree

So far we have considered attractors with stable tails.
However, for strong gains, the system cannot adjust itself in
quite well with the numerics. stable forms. Then the tails become unstable, and new soli-

Next, we discuss the influence of a delayed response arigns are generated. Figure 4 shows the evolution of an initial
show that stable chirped attractors exist also in that situatiorPu!S€ WithA=7=1,C=T=0=K=0 when evolved according
In Fig. 3, we again start with an exact solution fer =0 to Eq. (1) (with the same parameters as in Fig. 2, except for

by using the same parameter values as in Fig. 2. Then we pif= 008 andy=0.06, respectively We have varied the driv-
this form as the initial pulse into Eql), after changinge, N9 through the g, term on the right-hand side of EdL).

=0 into &, 0, leaving the other parameters unchanged. Fol" the unstable case=0.08, new solitons of the same form
demonstration, we set,=0.001. New attractors appear for &€ generated. Itis noteworthy that in all cases the individual
«.#0 which have quite different forms, depending on thePU!Ses have the formil7) with parameters following from
chosen values ok,. However, they belong to the class of the fixed points of Eq¥B2)~«B6). Wheny=0.06, i.e., in the
exact solutiong17) mentioned above. Theirst-orde) La- stable situation, again a single stable'so'lltor? appears as an
grangian predictiorfi.e., Eq.(17) with parameter values de- attractor. For much smaller values f dissipation is domi-

termined from Eqs(B2)<(B6)] is also shown. Again, the Nant and the initial pulse damps out. _ o
agreement is quite good. The adjustment betweeliinear and nonlineardriving

and damping processes is a complicated process which, in
general, is not easy to handle analytically. We can consider
; tail perturbations of the form exjkz—iwt) and determine the
2.4 imaginary part ok. When the first three terms on the right-
hand side of Eq(1) dominate the energy input and damping
=0.001 ) .
— %000 of the tails, we obtain

—Imk= 8- Bw?+ yo. (20

2.0

1.6 ODE prediction

lal

Then, stable tails can be expected for

5+£<o. (21
48

1.24 initial exact solution

0.8- K0 \

0.4
] This limit agrees with the numerical findings for long tails;
0.0 . ' : . . the presence of the core changes it a little bit. In addition,
-10 -5 0 5 10 15 when the othefnonlineay gain and damping terms become
t important, the tail stability criterion becomes modified.
FIG. 3. Asymptotic numerical solution of E¢L) in the case of IV. SUMMARY AND CONCLUSIONS
a delayed response. The prediction by the Lagrangian momentum
method is shown for comparison. We find attracttasz=4000 Summarizing, we have developed and applied methods
with stable tails. for identifying stable chirped attractors in quite general
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short-pulse models. In Appendix A, we investigated a simple
model which has been used in the literature many times. Our
analysis shows that no stalfleore and tailsattractor exists

for that simple case. More complex models, including vari-

ous other important physical effects, were discussed in the
main part of the paper. Now stable attractors could be iden-
tified.

The techniques developed here allow the fast finding of
stable attractors. One reason is that the attractors can be pre-
sented in analytical form. In addition, the excellent applica-
bility of the results of the Lagrangian perturbation theory
allows us to identify optimal conditions for narrow pulse
propagation under complex physical conditions.
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1. Core stability
APPENDIX A: SOLITARY SOLUTIONS FOR A
SIMPLIEIED CASE a. Numerics on a finite time domain

This appendix is devoted to the frequently used simplified e first consider the problem of solitary solutions in the

model for y=y=A=u=v=k=0=0. Then we have the rela- simplified model and solve EqAl) numerically. The nu-
tively simple model merics suggests, for different initial pulses, that the final so-

lution (attractoy is given by Eq.(A2). Figure 5 shows the
) 1 o . ) shape variation of two initial puls€s) and(b), respectively,
192+ S0u+ |al*a=1i5q +iBdy, (A1) \which approach the exact solutignormalized amplitude )1
while traveling along the axis. The results were obtained by
which contains gaid and damping3. In an earlier approach, a numerical simulation of Eq(Al) using an operator-
Hasegawa and Kodanj2] derived a reduced model for Eq. splitting algorithm on a finite time domain. When the exten-
(A1) by applying adiabatic perturbation theory on the stan-ssion of the time domain is not too large, that type of numer-
dard soliton solution. It led to a predicted attractor withoutics can only conclude on the core stability of the proposed
chirp. Pereira and Stenfl1], on the other hand, found an solution. We shall come back to the talil stability later.

exact solution of Eq(AL), The analytical solution only exists fai/ 8>0. Numerics
e further shows that for stable core®>0 is required. This
q(z,t) = AlsechiBt) |*"~exp(iDz), (A2)  result can be understood by the arguments presented in the

which contains the real parameters amplitidlewidth B, following subsections.

chirp C, and phas®. Inserting Eq(A2) into Eqg.(Al), one _ )
gets relations between the parameters and their dependences b. Collective coordinates

of 5and 3, namely We next present analytical arguments that the exact solu-

A2= 82(1 +38C- %Cz)' (A3) tion (A2) can be co'nsidered as the stable attra_ctor core. First,
we use a Lagrangian momentum method which reduces the
rather complex partial differential equation to a set of ordi-

B2 = o (A2) nary differential equation€ODES. For the derivation of the
B- %C’ ODE model, we use a Lagrangian perturbation thganfor
adiabatic perturbations. The idea is the following. We first

3 32 write the basic equation in the form
C:——i\/<—) +2, (A5)
4B 4B

1 N *
1027+ 50 * lql’g=ieRlq,q']. (A7)

D =A?-1B%- BB°C. (AB)

As the exact solution has a nonvanishing chirp, it is surprisThe right-hand side contains perturbation terms summarized
ing that the attractor presented by Hasegawa and Kodamay R. The unperturbed cubic nonlinear Schrédinger equation
has no chirp. (R=0) has the Lagrangian density
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* i * * l
Loa.q'1=5(d'a,~q,0) + E(Iql“— 15 (A8)

The basic equation of motion is then formulated in terms of

the functional derivative

oo _dLy_dily_ddLe o
s dq dtag, dzaq,
=ieR[q,q]. (A10)
Next we define

Lo:= f dt Lo. (A11)

When we substitute the ansatz

o(z,t) = 7(2) Secﬂi,,(z)t]e(iK(z)log{secmv(z)t)}ﬂa(z)),

(A12)

with amplitude », width v, phaseo, and chirpk, into the
Lagrangian density, of the unperturbed\LSE, integration
over time leads to the Lagrangidn as a function of the
parametersy, v, k, ando and their space derivatives,

_ 772KV2 270, 772Kz+ 2_774

1
Lo= - - - =721+ 9.
0T 2 v %o, 3v 3771}( <)

(A13)

Here, ap=-2+2 log 2. When starting with some arbitrary
initial conditions not agreeing with the parameters of an ex-
act solution, the solutiondor R=0) of the Euler-Lagrange

equations

2

KV
=g (A14)

2k1°
ve= T (A15)

2

Ky= J0F == k0P, (A16)

;= —[47] - 12+ K212 = 2a0(7? — VP + K%1P)] (ALT)
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B J<+oc dt|: 5[:0 (90] 5£0 (9C| :|
- &q I, 5q ZANY
= J dt |: iR’ [qo qo] + |8R[q01q0] :|

(A18)

From here the modified Euler-Lagrange equationsRor
#0 (i.e., # 0 and B+ 0) follow in the form

nkv? 7 1 2 2
= + - = -
7,= 07 3 gﬁnv 9377’< v, (AL9)
2k1® 8 . 4
v,= 3 —§IB % +§,8K 14 (A20)
2, 2 2 3.2
Kz:§(7] -V -Bk1P-K*1P-B 1P, (A2])

The fourth equation for the parameterdecouples from the
system(A19)—(A21) and yields(for constanty, v, andk) o
as a linear function o,

2 1 5 (1 1 2 1 1
0= §_§al n+ 3a1—é 2+ §a1+§a2—§a3

X Br1? + ( + ;al) K212 + (ial— §a4)ﬁK3V2.

(A22)
We have introduced
26 8
a=ap=-2+21log 2, a,=——+=log 2,
9 3
(A23)
az=—-5+61log2, a,=-4+3log2. (A24)

It is noteworthy that the parameters of the exact solution
(A2) are identical with the fixed point of the system
(A19)+A21).

Numerical simulations of the ODE model show an
asymptotic approach of the initial pulse parameters to the
stationary solution. Figure 6 displays a typical example for
an initial pulse withp>A, »>B, and x> C. Decaying os-

show oscillations of the parameters around the exact valuesillations in the pulse parameters occur; the final state corre-
To incorporate the influence of gain and damping, wesponds to the exact solutigi2). The attraction by the so-

follow the method presented ifi32] for a perturbation

lution (A2) is also shown in Fig. 7. The calculations agree

eR[q,q ]= 89+ Bqy. The systematic perturbation theory leadswith the simulations of EqAl).

to equations for the parametdis e {7, v, k, o},

aH dzé!HIZ
o _d o
Jll;  dzoll;,

X f dt £4(0,9", 929y, % )

A stability analysis of the solutiofA2) can be done
within the ODE model, i.e., we investigate the stability of the
parametergA3) and (A4). Starting from perturbed param-
eters, a linearization of EqgA19)—(A22) shows that the
attractor is stable.

c. Perturbation theory

So far, we succeeded in modeling the correct behavior of
the pulse by gsimple momentum model. Still, in the math-
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2.0+ While linearizing the equations at the fixed poartR and
] b=J, we assume the presence of small perturbatioasd j,
vy e
=] a=R+r, b=J+j, (A28)
=
10 with a growth(damping rateT’, r,j ~exp(I'z). The expan-
> sions ofR, J, as well as of, j, andI" are
STy A%
= 05- R=Ry+eR; + E€Rp+ -+, (A29)
i K
nl\ /\T JANY AN\
\VAR /4
0~0-\/\/VVV J=Jo+ e+t oo, (A30)
0 30 60 % 120
A r =r0+€1/2r1/2+ €r1+ ey (A31)
FIG. 6. Solution of the Euler-Lagrange equatiqAd 9)—«(A21) L 12 .
for $=0.01 andB=0.03. J=lot e Jupt et (A32)
ematically strict sense, the stability of the fixed point is not F=To+ T p+ely+ . (A33)

shown. To analyze the stability more exactly, a detailed in-

vestigation of Eq(A1l) itself is needed. Here, we perform the \When we insert these expansions into E4£26) and(A27),
stability investigation by a multiple scales technique, searchwe get relations(characterized by the orders & which
ing for the first nonvanishing real part of the growth rate of asuccessively produce solvability conditions 1qp,. Defining

perturbation. the operators
After separating the phade, we split Eq.(Al) into the
real and imaginary parts, i.e.,

Ho=- =R+ o0, (A34)
q= (a+ib)exdiDz], (A25) 2 2
and obtain
1 > 13 H_= }att — 3Ry + % (A35)
az:‘ébtt‘ba -b®+Db+eda+eBa;, (A26) 2 2B

leads to straightforward eigenvalue problems. Within the
b,= }att+ab2+a3— Da+ edb + 8by,. (A27) lowest order we gel'grg=H.jo and I'gjp=—H_r,, yielding
2

the solutionry=0,jo=Ry, andI'(=0. Calculating the order
1/2

Here, we have indicated the smallnessdfnd 8 by an £’ © Obti“[] Of”l’? and Fylo=—H-ryz With j12=o
additional factore to show the orders of perturbations and =Ro andry,=—H_""'s2o. We can derive an expression for
the different scalesAt the end we can sai=1) ri2 in each step/2. The further calculations show thB,

: also vanishes. Finall\'; is the essential rate, determining
the stability of the pulse,

2
0.2 F~6F1=—e§5+ielm(l"1). (A36)

Obviously, a stable situation exists as longéasO.

g
L
SRy

afll
g8
T

-0.1 2. Modulational instability of the tails

B
“‘

o
[1]]

0.2 A stability analysis of the ODE model shows that the
attractor core is stable fa¥>0. However, in order to get a
stable stationarylong-living) solution in a broad time do-
main, balance between driving and damping is required in all
regions. Imagine we have very long tails. Then, #of 0, the
o tail becomes unstable to long-wavelenggiow) modula-
tions. The reason is very simple. On the tail, perturbations
FIG. 7. Trajectory to the stable attractor in reduced parameteProportional to exfikz—iwt) will be amplified by the term
space for6=0.01 andB=0.03. Note that the attractor has a finite proportional toyq on the right-hand side of EgA1) in the
chirp «. small-w limit.

N
)
’:
Y
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APPENDIX B: DETAILS OF THE GENERAL
EULER-LAGRANGE EQUATIONS

Starting from the Lagrangian

2A* 1., 1., A2 2AK  2A°QT
L==—-ZA%p- ZA%C?y- - +
37 3 3 Ui Ui ]
2AC’ log[4]A’C’ AZXCy'
. _log[4] LAC (B1)
] Ui 7

the Euler-Lagrange equations are
1 2 2 3
dA= 9—(A{9K,A - 90;AQ + [ 7(B- 3\ Q)
n

= C%(B-3nQ) + 3C(1 + 6\ )] + 7[A%(8x - o,

+0iC = 8ui) + 96—y - BA*+ N Q). (B2)
d,m= 3%(2{— 3k, A%+ A¥30,Q + 5(- 2y + 0, — 0,C
+2ui )] + An[(1+C? (B - 3\ Q)
+3(- 8+ 90+ pO2-NQ)]+ 394, (BY)

1
9,C = ST(GKrA3C + 23~ 30,CQ + 71 + oi(1 + 2C?)
n

+ u 1+ Cx = o — wi Q) ]} - 6CHA’
+ A= 4C353(B- 3\ Q) - 273(1 + 61 Q)

PHYSICAL REVIEW E 70, 056605(2004)

- 2C%74(1 + 6\, Q) + C[- 473%(B - 3\, Q)

+67m(5- ¥ - A2+ NQ3) + 37T, (B4)

2 1 K A% o A?
. + —_— e —
3 3 7 o7

2 2
+ N7 é)\ian +\C?9 - 5MC3772 +Q

g; AZQ

+2BCO - ==
7

+ 31,02 - 3\,CO?, (B5)

1 2 2 22 2
d) = 15 10x;A° = 100,A%n — 100;A°Cn — 10y7x

— 12u;A%97 — 81,A%97 + 8u, A’C 7% + 81, A’C 1
- 10yC27P - 4uiA’C?9 + 14\ 7 + 20N, C? o

10x,A%(Cy - 3Q)

+ 6\, Chyt - + 3080 + 20yA2Q)

+ 200,A2CQ - 30B87°Q — 30BC277Q) — 30y0)?

300:A%02
- 20u;A%0% - 'T + 60N 7% + 60N C?7°02
300A" 1507
— 30803+ 30\, Q% - el ) (B6)
]
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